(本小题满分13分)如图,正三棱柱中,D是BC的中点,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
设命题,若同时为假命题,求x的取值集合.
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐V标方程为,M,N分别为曲线C与x轴、y轴的交点. (1)写出曲线C的直角坐标方程,并求M,N的极坐标; (2)求直线OM的极坐标方程.
设函数2|x-3|+|x-4|. (1)求不等式的解集; (2)若不等式的解集不是空集,求实数a的取值范围.
已知的导函数的简图,它与轴的交点是(0,0)和(1,0), 又 (1)求的解析式及的极大值. (2)若在区间(m>0)上恒有≤x成立,求m的取值范围.
已知双曲线C:离心率是,过点,且右支上的弦过右焦点. (1)求双曲线C的方程; (2)求弦的中点的轨迹E的方程; (3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.