(本小题共13分)已知函数().(Ⅰ)求函数的单调区间;(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。
已知为坐标原点,点分别在轴轴上运动,且=8,动点满足=,设点的轨迹为曲线,定点为直线交曲线于另外一点. (1)求曲线的方程; (2)求面积的最大值.
正项数列的首项为,时,,数列对任意均有 (1)若,求证:数列是等差数列; (2)已知,数列满足,记数列的前项和为,求证.
双曲线与双曲线有共同的渐近线,且经过点,椭圆以双曲线的焦点为焦点且椭圆上的点与焦点的最短距离为,求双曲线和椭圆的方程.
某工厂计划生产甲、乙两种产品,这两种产品都需要两种原料。生产甲产品1工时需要A种原料3kg,B种原料1 kg;生产乙产品1工时需要A种原料2kg,B种原料2kg。现有A种原料1200 kg,B种原料800 kg。如果生产甲产品每工时的平均利润是30元,生产乙产品每工时的平均利润是40元,问甲、乙两种产品各生产多少工时能使利润的总额最大?最大利润是多少?
在中内角的对边分别为,且, (1)求的值; (2)如果,且,求的面积.