(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米。(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
在中,角,,所对的边分别是,,,且满足. (1)求角的大小; (2)求的最大值,并求取得最大值时角的大小.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
已知函数 (1)在给定的平面直角坐标系中,画函数,的简图; (2)求的单调增区间; (3) 函数的图象只经过怎样的平移变换就可得到的图象?
已知函数的最大值为,最小值为. (1)求的值; (2)已知函数,当时求自变量x的集合.