设函数.(1)判断函数的单调性;(2)对于函数,若,则.写出该命题的逆命题,判断这个逆命题的真假性,并加以证明.
(本小题满分12分)已知投资某项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是.设该项目产品价格在一年内进行2次独立的调整,记产品价格在一年内的下降次数为,对该项目每投资十万元,取0、1、2时,一年后相应的利润为1.6万元、2万元、2.4万元.求投资该项目十万元,一年后获得利润的数学期望及方差.
(本小题满分10分)某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率。
已知抛物线:上一点到其焦点的距离为.(I)求与的值;(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点作的垂线交于另一点.若是的切线,求的最小值.
如图所示,在直四棱柱中,, ,点是棱上一点.(Ⅰ)求证:面;(Ⅱ)求证:;(Ⅲ)试确定点的位置,使得平面平面.
设、分别是椭圆的左、右焦点.(Ⅰ)若是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为钝角(其中为坐标原点),求直线的斜率的取值范围.