某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?
已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN. (1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形; (2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF. (1) 证明:∠BAC=∠DAC,∠AFD=∠CFE; (2) 若AB∥CD,试证明四边形ABCD是菱形; (3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F. (1)说明 EO=FO. (2)当点O运动到何处,四边形AECF是矩形?说明你的结论. (3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.