某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?
如图,已知A(1,5)、B(1,2)、C(5,2)。若以点B为中心,顺时针旋转90°。A、C旋转后对应的点是、。 (1)求; (2)写出、的坐标。
已知某个一次函数图象经过点A(0,2)、B(2,0)是这个函数图象上的两点. (1)求一次函数的解析式。 (2)点C(x1,y1)、D(x2,y2)是这个函数图象上的两点.若x1<x2,比较y1,y2的大少。
如图,、是等腰梯形的两条对角线.证明:=
已知二次函数.当时,函数值随的增大而减小,求的取值范围;以抛物线的顶点为一个顶点作该抛物线的内接正(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由;若抛物线与轴交点的横坐标均为整数,求整数的值.
如图,在中,,以为直径的⊙分别交、于点、,点在的延长线上,且.求证:直线是⊙的切线;若,,求的长.