(本小题满分12分) 如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心. (1)求圆锥的表面积; (2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.
如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成(Ⅰ)证明PQ⊥BC;(Ⅱ)若M为棱CQ上的点且, 求的取值范围,使得二面角P-AD-M为钝二面角。
已知等差数列的前项和为,等比数列的前项和为,它们满足,,,且当时,取得最小值.(Ⅰ)求数列、的通项公式;(Ⅱ)令,如果是单调数列,求实数的取值范围.
(Ⅰ)求函数图像的对称轴方程;(Ⅱ)设的三个角所对的边分别是,且,成公差大于的等差数列,求的值.
过直线上的动点作抛物线的两条切线,其中为切点.⑴若切线的斜率分别为,求证:为定值;⑵求证:直线恒过定点.
(本小题满分10分)某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为.⑴按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?⑵若单打获胜得分,双打获胜得分,求高一年级得分的概率发布列和数学期望.