如图1,平面直角坐标系中,抛物线与轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与轴平行,点F是射线BE上的一个动点,连接AD、AF、DF.(1)若点F的坐标为(,),AF=.①求此抛物线的解析式;②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;(2)若,,且AB的长为,其中.如图2,当∠DAF=45时,求的值和∠DFA的正切值.
如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以D为圆心似长为半径作 圆O、C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b, (1)求证:AE=b+a; (2)求a+b的最大值; (3)若m是关于x的方程:x+ax=b+ab的一个根,求m的取值范围.
已知等边△ABC,边长为4,点D从点A出发,沿AB运动到点B,到点B停止运动.点E从A出发,沿AC的方向在直线AC上运动.点D的速度为每秒1个单位,点E的速度为每秒2个单位,它们同时出发,同时停止.以点E为圆心,DE长为半径作圆.设E点的运动时间为t秒. (l)如图l,判断⊙E与AB的位置关系,并证明你的结论; (2)如图2,当⊙E与BC切于点F时,求t的值; (3)以点C为圆心,CE长为半径作⊙C,OC与射线AC交于点G.当⊙C与⊙E相切时,直接写出t的值为____
如图,利用一面墙(墙EF最长可利用25米),围成一个矩形花园ABCD,与围墙平行的一边BC上要预留3米宽的入口(如图中MN所示,不用砌墙),用砌46米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为299平方米.
如图,已知在Rt△ABC中,∠ACB=90°,BC >AC,⊙O为△ABC的外接圆,以点C为圆 心,BC长为半径作弧交CA的延长线于点D,交⊙O于点E,连接BE、DE. (1)求∠DEB的度数; (2)若直线DE交⊙0于点F,判断点F在半圆AB上的位置,并证明你的结论.
△ABC为等边三角形,点D是边AB的延长线上一点(如图1),以点D为中心,将△ABC按顺时针方向旋转一定角度得到△ABC. (1)若旋转后的图形如图2所示,请将△ABC以点O为中心,按顺时针方向再次旋转同样的角度得到△ABC,在图2中用尺规作出△ABC,请保留作图痕迹,不要求写作法: (2)若将△ABC按顺时针方向旋转到△ABC的旋转角度为(0°<<360°).且AC∥BC,直接写出旋转角度的值为________________