如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2)。过点D(0,3)和E(6,0)的直线分别与AB、BC交于点M、N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3) 若反比例函数(>0)的图象与△MNB有公共点,请直接写出的取值范围.
梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF. (1)求证:AE•CF=BE•DF; (2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.
甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x之间的函数图象如图所示,根据图象所提供的信息解答问题: (1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是; (2)求甲距终点的路程y(米)和跑步时间x之间的函数关系式; (3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.
解不等式组:,且写出使不等式组成立的所有整数.
先化简,再求值:,其中.