如图,顶点为D的抛物线与x轴相交于A、B两点,与y轴相交于点C,连结BC,已知△BOC是等腰三角形。(1)求点B的坐标及抛物线的解析式;(2)求四边形ACDB的面积;(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S。①求S与x之间的函数关系式。②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标。
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧). (1)求抛物线的解析式; (2)求点O到直线AB的距离; (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.
已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ. (1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长; (2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D. ①判断OQ与AC的位置关系,并说明理由; ②求线段PQ的长.
已知二次函数. (1)如果二次函数的图象与x轴有两个交点,求m的取值范围; (2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示: 当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?