(本小题满分12分)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。(Ⅰ)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(Ⅱ)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.
(本小题满分12分)各项均不为零的数列(1)求数列的通项公式;(2)数列
(本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。(1)求X的分布列和均值;(2)求该同学在这项考试中获得合格证书的概率。
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。(1)求证:BE//平面PAD;(2)若BE⊥平面PCD,①求异面直线PD与BC所成角的余弦值;②求二面角E—BD—C的余弦值。
(本小题12分)已知钝角△ABC中,角A、B、C的对边分别为a、b、c,且有(1)求角B的大小;(2)设向量的值。
(本小题满分12分)数列:满足(1) 设,求证是等比数列;(2) 求数列的通项公式;(3) 设,数列的前项和为,求证: