若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。(1)求的表达式及的值;(2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。
(本小题满分15分)已知函数,,其中为实数. (1)设为常数,求函数在区间上的最小值; (2)若对一切,不等式恒成立,求实数的取值范围.
(本小题满分14分)正△的边长为4,是边上的高,分别是 和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值; (3)在线段上是否存在一点,使?证明你的结论.
(本小题满分14分)已知数列的前项和为,,若数列是公比为的等比数列. (1)求数列的通项公式; (2)设,,求数列的前项和.
(本小题满分14分)设函数. (1)求函数的最小正周期和单调递增区间; (2)在△ABC中,角A,B,C所对边分别为a,b,c,且求a的值.
如图,已知直线与抛物线和圆都相切,F是C1的焦点. (1)求m与a的值; (2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上; (3)在(2)的条件下,记点M点所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P、Q两点,求△NPQ的面积S的取值范围.