已知F1、F2是椭圆c1:(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.
已知函数 (1)若a=1,求函数f(x)的零点; (2)若函数f(x)在[-1,+∞)上为增函数,求a的取值范围.
某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记资金总额为y(单位:万元),销售利润为x(单位:万元). (1)写出该公司激励销售人员的奖励方案的函数表达式; (2)如果业务员老张获得5.5万元的资金,那么他的销售利润是多少万元?
已知函数f(x)=x2+2ax+2,x∈[-5,5]. (1)当a=-1时,求函数f(x)的最大值和最小值; (2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数
(1)计算:+(lg 5)0+; (2)解方程:log3(6x-9)=3.
已知函数f(x)=x+,且f(1)=3. (1)求m; (2)判断函数f(x)的奇偶性.