(本小题满分12分)等比数列{}的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.(1)求r的值; (2)当b=2时,记 求数列的前项和
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?
已知:,, 求证:.
已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长;(Ⅱ)求sin∠ANC.
对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,①试比较g(a)与g(1)的大小;②求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))>g(lnx1)+g(lnx2)+ +g(lnxn).