(本小题共9分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R(Ⅰ)求A∪B,(C A)∩B;(Ⅱ)若A∩C≠,求a的取值范围。
如图,三棱锥P—ABC中,平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB。 (1)求证:平面PCB; (2)求二面角C—PA—B的余弦值。
已知函数的最小正周期为 (1)求的单调递增区间; (2)在中,a、b、c分别是角A、B、C的对边,若的面积为,求a的值。
已知:函数.(其中e为自然对数的底数,e=2.71828…〉. (1) 当时,求函数的图象在点处的切线方程; (2) 当时,试求函数的极值; (3)若,则当时,函数的图象是否总在不等式所表示的平面区域内,请写出判断过程.
已知椭圆的右焦点为且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且. (1) 求椭圆的方程; (2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.
如图,在正三棱柱中,是的中点,是线段上的动点,且 (1)若,求证:; (2) 求二面角的余弦值; (3) 若直线与平面所成角的大小为,求的最大值.