.求满足下列条件的椭圆的标准方程.(1)已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,.
(本小题满分12分)已知函数有两个实根为。(1)求函数的解析式;(2)解关于的不等式
(本小题满分10分)已知函数(1)求函数的最小正周期和图象的对称轴方程;(2)求函数在区间上的值域。
(本小题满分14分)已知函数,函数是区间[-1,1]上的减函数.(I)求的最大值;(II)若上恒成立,求t的取值范围;(Ⅲ)讨论关于x的方程的根的个数.S△ABC=,求a的值.
(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点.S△ABC=,求a的值.
(本小题满分12分)如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:AB平面BEF;(Ⅱ)设PA=k ·AB,若平面与平面的夹角大于,求k的取值范围.