(本小题满分13分)已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。(Ⅰ)求椭圆的方程;(Ⅱ)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
已知.函数.e为自然对数的底(1)当时取得最小值,求的值;(2)令,求函数在点P处的切线方程
已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为. (1)求过圆心且与直线l垂直的直线m方程; (2)点P在直线m上,求以A(-1,0),B(1,0)为焦点且过P点的长轴长最小的椭圆的方程.
在中,角的对边分别为,(1) 若,,求.(2) 若c=6,过AB中点O垂直于平面ABC的直线上有一点P,PO=,当.
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.求的取值范围。
设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线。