(本小题满分12分)某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为,假设各次考试合格与否均互不影响.(1)求他不需要补考就可获得证书的概率;(2)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量的分布列和数学期望.
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC 及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EDC.(1)求证:CD⊥DE; (2)求三棱锥A—DEC的体积。
如图,直三棱柱中,,,为棱的中点.(1)求证:平面; (2)求与平面ADC所成角的正弦值.
如图ABCD—A1B1C1D1是正方体, E是棱BC的中点. (1) 求证:BD1∥平面C1DE; (2)求二面角C1—BD—C的正切值.
已知点,直线L的方程是. (1)求点Q到直线L的距离; (2)若一个正方形的中心为Q,一边在直线L上,求另三边所在的直线方程。
已知函数的最小正周期为 (Ⅰ)求的值; (Ⅱ)若不等式在上恒成立,求实数的取值范围.