如图,矩形ABCD中,P是线段AD上一动点,O为BD中点,PO的延长线交BC于Q。(1)求证:四边形PDQB为平行四边形;(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合)。设点P运动时间为t秒,请用t表示PD的长,并求t为何值时,四边形PBQD是菱形。
先化简,再求值:,其中。
如图,在平面直角坐标系中,点A、B的坐标分别为A(-4,0),B(0,3)。(1)求AB的长;(2)过点B作BC⊥AB,交轴于点C,求点C的坐标;(3)在(2)的条件下,如果P、Q分别是AB和AC上的动点,连结PQ,设AP=CQ=m,问是否存在这样的使得△APQ与△ABC相似,若存在,请求出的值;若不存在,请说明理由。
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?
如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.(1)试说明:△ABD∽△DCB;(2)若BD=7,AD=5,求BC的长.
先化简,再求值: