(本小题满分10分)已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上。(1)、求圆M的方程(2)、设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值。
已知命题p:“”,命题q:“”若命题“p且q”是真命题,求实数a的取值范围.
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列. (Ⅰ)求椭圆的标准方程; (Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)
已知. (Ⅰ)时,求证在内是减函数; (Ⅱ)若在内有且只有一个极值点,求实数的取值范围.
已知等差数列,公差,前项和为,且满足,. (Ⅰ)求数列的通项公式及前项和 (Ⅱ)设,若数列也是等差数列,试确定非零常数,并求数列的前项和.
如图所示,已知圆的直径长度为4,点为线段上一点,且.点为圆上一点,且.点在圆所在平面上的射影为点,. (Ⅰ)求证:平面; (Ⅱ)求与平面所成的角的正弦值。