(本小题满分12分)如图,为椭圆上的一个动点,弦、分别过焦点、,当垂直于轴时,恰好有(Ⅰ)求椭圆的离心率;(Ⅱ)设.①当点恰为椭圆短轴的一个端点时,求的值;②当点为该椭圆上的一个动点时,试判断是否为定值? 若是,请证明;若不是,请说明理由.
已知
设数列的前项和为,且方程有一个根为,.(1)证明:数列是等差数列;(2)设方程的另一个根为,数列的前项和为,求的值;(3)是否存在不同的正整数,使得,,成等比数列,若存在,求出满足条件的,若不存在,请说明理由.
已知函数(1)若不等式的解集为,求的取值范围;(2)解关于的不等式;(3)若不等式对一切恒成立,求的取值范围.
如图,某城市设立以城中心为圆心、公里为半径的圆形保护区,从保护区边缘起,在城中心正东方向上有一条高速公路、西南方向上有一条一级公路,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆相切的直道.已知通往一级公路的道路每公里造价为万元,通往高速公路的道路每公里造价是万元,其中为常数,设,总造价为万元.(1)把表示成的函数,并求出定义域;(2)当时,如何确定A点的位置才能使得总造价最低?
(1)如图,已知是坐标平面内的任意两个角,且,证明两角差的余弦公式:;(2)已知,且,,求的值.