(本小题满分13分)已知点,,△的周长为6.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b.(1)求实数a,b的值.(2)若复数z满足|﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.
已知函数,.(1)若,求证:函数是上的奇函数;(2)若函数在区间上没有零点,求实数的取值范围.
已知命题,命题。(1)若p是q的充分条件,求实数m的取值范围;(2)若m=5,“ ”为真命题,“ ”为假命题,求实数x的取值范围。
设正整数数列满足:,且对于任何,有.(1)求,;(2)求数列的通项.
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有.(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.