.(本小题满分12分)已知椭圆与双曲线有共同的焦点F1、F2,设它们在第一象限的交点为P,且(1)求椭圆的方程;(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线,与椭圆交于不同的两点A、B,点Q满足?若存在,求出的取值范围;若不存在,说明理由。
曲线极坐标方程为,直线参数方程为(为参数)(1)将化为直角坐标方程(2)与是否相交?若相交求出弦长,不相交说明理由。
椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
.已知⊙C的参数方程为,(为参数),是⊙C与轴正半轴的交点,以圆心C为极点,轴正半轴为极轴建立极坐标系.(Ⅰ)求⊙C的普通方程.(Ⅱ)求过点P的⊙C的切线的极坐标方程.
在直三棱柱中,,,且异面直线与所成的角等于,设.(1)求的值;(2)求平面与平面所成的锐二面角的大小
如图,在圆上任取一点P,过点P作轴的垂线PD,D为垂足,当点P在圆上运动时,求线段PD的中点的轨迹方程.