(本小题满分12分)抛物线顶点在坐标原点,焦点与椭圆的右焦点重合,过点斜率为的直线与抛物线交于,两点.(Ⅰ)求抛物线的方程;(Ⅱ)求△的面积.
(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.
(本小题共12分)设数列的前项和为,已知,().(Ⅰ)求证:数列为等差数列,并分别写出和关于的表达式;(Ⅱ)若,为数列前项和,求;(Ⅲ)是否存在自然数,使得? 若存在,求的值;若不存在,说明理由.
(本小题满分12分)如图,在四棱锥中,,, ,.⑴求证平面;⑵试求二面角的大小.
(本小题满分12分)学校要用三辆校车从南校区把教职工接到校本部,已知从南校区到校本部有两条公路,校车走公路①堵车的概率为,不堵车的概率为;校车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆校车中恰有一辆校车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(1)的条件下,求三辆校车中被堵车辆的辆数的分布列和数学期望.
(本小题满分12分)已知,其中向量=(),=(1,)()(1)求的最小正周期;(2)在△ABC中,角A、B、C的对边分别为、、,,,,求边长b的值.