(本小题满分12分)设函数.(Ⅰ)若,求取值范围;(Ⅱ)求的最值,并给出最值时对应的的值.
已知直线l的参数方程:(t为参数)和圆C的极坐标方程:ρ=2sin(θ+),判断直线和圆C的位置关系.
已知两曲线参数方程分别为(0≤θ<π)和(t∈R),求它们的交点坐标.
设直线l1的参数方程为(t为参数),直线l2的方程为y=3x+4,求l1与l2间的距离.
在直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-)=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标.(2)设MN的中点为P,求直线OP的极坐标方程.
在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-)=.(1)求圆O和直线l的直角坐标方程.(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.