已知函数.(1)求的单调递增区间;(2)若在处的切线与直线垂直,求证:对任意,都有;(3)若,对于任意,都有成立,求实数的取值范围.
如图,平面内有三个向量:、、,其中与的夹角为,与的夹角为,,并且 求:的值.
已知=2,求: (1)的值;(2)的值.
(本小题满分14分) 已知函数的图象在上连续不断,定义:,. 其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”. (Ⅰ)若,,试写出,的表达式; (Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由; (Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分13分) 已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点. (Ⅰ)写出抛物线的标准方程; (Ⅱ)若,求直线的方程; (Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分13分) 已知函数,其中a为常数,且. (Ⅰ)若,求函数的极值点; (Ⅱ)若函数在区间上单调递减,求实数a的取值范围.