商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变的情况下,每件商品降价多少元时,商场日盈利可达到2100元?
近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图: 根据以上图表信息,解答下列问题: (1)统计表中的m= ; (2)统计图中表示“影响不大”的扇形的圆心角度数为 度; (3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?
一个不透明袋子中有 1个红球, 1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=l时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是_(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球额色不同的概率
某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题. (1)填空:点C的坐标为( , ),点D的坐标为( , ); (2)设点P的坐标为(a,0),当最大时,求a的值并在图中标出点P的位置; (3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?
国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?