(本小题满分12分)如图,四棱锥的底面是菱形,,面, 是的中点, 是的中点.(Ⅰ)求证:面⊥面; (Ⅱ)求证:∥面.
(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数. (Ⅰ) 当时,求函数的不动点; (Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围; (Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.
定义在R上的单调函数满足且对任意都有. (1)求证为奇函数; (2)若对任意恒成立,求实数的取值范围.
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和 轴的垂线,垂足分别为. (1)写出的单调递减区间(不必证明); (2)问:是否为定值?若是,则求出该定值,若不是,则说明理由; (3)设为坐标原点,求四边形面积的最小值.
设函数,其中,区间 (Ⅰ)求的长度(注:区间的长度定义为); (Ⅱ)给定常数,当时,求长度的最小值.
已知函数,其中常数a > 0. (1) 当a = 4时,证明函数f(x)在上是减函数; (2) 求函数f(x)的最小值.