如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.
2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面 O 处发射,当火箭到达点 A 时,地面 D 处的雷达站测得 AD = 4000 米,仰角为 30 ° .3秒后,火箭直线上升到达点 B 处,此时地面 C 处的雷达站测得 B 处的仰角为 45 ° .已知 C , D 两处相距460米,求火箭从 A 到 B 处的平均速度(结果精确到1米 / 秒,参考数据: 3 ≈ 1 . 732 , 2 ≈ 1 . 414 ) .
疫情期间,我市积极开展"停课不停学"线上教学活动,并通过电视、手机 APP 等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为: A .效果很好; B .效果较好; C .效果一般; D .效果不理想),并根据调查结果绘制了如图两幅不完整的统计图:
(1)此次调查中,共抽查了 名学生;
(2)补全条形统计图,并求出扇形统计图中 ∠ α 的度数;
(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则"1人认为效果很好,1人认为效果较好"的概率是多少?(要求画树状图或列表求概率)
如图,在菱形 ABCD 中,将对角线 AC 分别向两端延长到点 E 和 F ,使得 AE = CF .连接 DE , DF , BE , BF .
求证:四边形 BEDF 是菱形.
解方程: x x - 1 = 4 x 2 - 1 + 1 .
已知 D 是 Rt Δ ABC 斜边 AB 的中点, ∠ ACB = 90 ° , ∠ ABC = 30 ° ,过点 D 作 Rt Δ DEF 使 ∠ DEF = 90 ° , ∠ DFE = 30 ° ,连接 CE 并延长 CE 到 P ,使 EP = CE ,连接 BE , FP , BP ,设 BC 与 DE 交于 M , PB 与 EF 交于 N .
(1)如图1,当 D , B , F 共线时,求证:
① EB = EP ;
② ∠ EFP = 30 ° ;
(2)如图2,当 D , B , F 不共线时,连接 BF ,求证: ∠ BFD + ∠ EFP = 30 ° .