(本小题满分12分)已知直线l1:4x:-3y+6=0和直线l2:x=-,.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(I )求抛物线C的方程;(II)直线l过抛物线C的焦点F与抛物线交于A,B两点,且AA1,BB1都垂直于直线l2,垂足为A1,B1,直线l2与y轴的交点为Q,求证:为定值。
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,, AB=BC=3,求BD以及AC的长.
已知函数的图像过坐标原点,且在点处的切线的斜率是. (1)求实数的值; (2)求在区间上的最大值; (3)对任意给定的正实数,曲线上是否存在两点,使得是以为 直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为. (I)求椭圆方程; (II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
在四棱锥中,底面,,,,,是的中点. (1)证明:; (2)证明:平面; (3)求二面角的余弦值.
从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题: (1)样本的容量是多少? (2)列出频率分布表; (3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率; (4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.