(本小题满分12分)已知直线l1:4x:-3y+6=0和直线l2:x=-,.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(I )求抛物线C的方程;(II)直线l过抛物线C的焦点F与抛物线交于A,B两点,且AA1,BB1都垂直于直线l2,垂足为A1,B1,直线l2与y轴的交点为Q,求证:为定值。
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切. (1)求圆的标准方程; (2)设直线与圆相交于两点,求实数的取值范围; (3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点.
(本小题16分)四棱锥中,底面是边长为8的菱形,,若,平面⊥平面. (1)求四棱锥的体积; (2)求证:⊥.
已知圆心 (Ⅰ)写出圆C的标准方程; (Ⅱ)过点作圆C的切线,求切线的方程及切线的长.
(本小题满分14分)如图,在五面体ABC—DEF中,四边形BCFE 是矩形,DE 平面BCFE. 求证:(1)BC 平面ABED; (2)CF // AD.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点. (1)求证:GH∥平面CDE; (2)求证:面ADEF⊥面ABCD.