(本小题满分12分)如图,已知三棱柱ABC-A1B1C1(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1(II)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC。
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
已知数列{an}的前n项和, (1)求通项公式an ;(2)令,求数列{bn}前n项的和Tn.
已知函数,. (1)求的单调增区间;(2)若,求的最小值.
在各项均为正数的等比数列{an}中,已知a2 = 2,a5 = 16,求: (1)a1与公比q的值;(2)数列前6项的和S6 .
在中,已知角,,,解此三角形。