已知长方形的长为,宽为,求与这个长方形面积相等的正方形的边长.
已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线经过的象限,并说明理由.
如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A,B,求劣弧AB与弦AB围成的图形的面积(结果保留π).
已知:如图,E,F在AC上,AD//CB且AD=CB,∠D=∠B.求证:AE=CF.
如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度从A点出发,沿AC向C移动,同时,动点Q以1米/秒得速度从C点出发,沿CB向B移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。(1)①当t=2.5秒时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数关系式;(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。
小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。(1)小王从B地返回A地用了多少小时?(2)求小王出发6小时后距A地多远?(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?