如图, 是边长为的正方形,平面,,,与平面所成角为. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。
已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。(1)求椭圆的方程;(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。
设函数.(1)求f(x)的单调区间和极值;(2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线上.(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.