已知椭圆的离心率为,且过点,为其右焦点.(1)求椭圆的方程; (2)设过点的直线与椭圆相交于、两点(点在两点之间),若与的面积相等,试求直线的方程.
为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和. (1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点. (Ⅰ)求函数的解析式; (Ⅱ)在中,角的对边分别为,且,求的取值范围.
设和是函数的两个极值点,其中,. (1)求的取值范围; (2)若,求的最大值.注:e是自然对数的底.
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段EF上. (1)求异面直线与所成的角; (2)求二面角的余弦值.
已知数列,,,. (1)求证:为等比数列,并求出通项公式; (2)记数列 的前项和为且,求.