(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=. (Ⅰ)求点S的坐标;(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;①判断直线MN的斜率是否为定值,并说明理由;②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.
已知不等式. (1)若不等式的解集为 (2)若不等式的解集为.
已知函数f (x)=x3+(1-a)x2-3ax+1,a>0. (Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1; (Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 :3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上. (Ⅰ) 求椭圆C的方程; (Ⅱ) 求的取值范围.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2. (Ⅰ) 求异面直线EF与BC所成角的大小; (Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积. (Ⅰ) 求概率P ( X=); (Ⅱ) 求数学期望E ( X ).