(本题满分15分) 已知函数f(x)=x3+ax2+bx,a , bR.(Ⅰ) 曲线C:y=f(x) 经过点P(1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值;(Ⅱ) 已知f(x)在区间(1,2) 内存在两个极值点,求证:0<a+b<2
(本小题共14分) 已知函数,数列是公差为d的等差数列,是公比为q ()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有,求的值.
(本小题共13分) 已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2). (Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由; (Ⅱ) 求二面角B-AC-D的平面角的正切值.
图(1)图(2)
(本小题共13分) 已知函数,在曲线的所有切线中,有且仅有一条切线l与直线垂直. (Ⅰ)求a的值和切线l的方程; (Ⅱ)设曲线上任一点处的切线的倾斜角为,求的取值范围.
(本小题共13分) 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率.
(本小题满分12分) 已知函数. (1)当时,求函数的单调区间和极值; (2)当时,若对任意,均有,求实数的取值范围; (3)若,对任意、,且,试比较与的大小.