(本题满分15分) 设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称.(Ⅰ) 求曲线C2的方程;(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由
(本小题满分12分)f(x)=.,其中向量=(m,cos2x),=(1+sin2x,1),,且函数的图象经过点. (Ⅰ)求实数的值. (Ⅱ)求函数的最小值及此时值的集合。
已知等差数列中,. (1)求数列的通项公式; (2)令,证明:.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)解不等式; (Ⅱ)若存在实数x,使得,求实数a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知在平面直角坐标系中,直线的参数方程是(t是参数),以原点O为极点,x轴正半轴建立极坐标系,曲线C的极坐标方程. (Ⅰ)判断直线与曲线C的位置关系; (Ⅱ)设M为曲线C上任意一点,求的取值范围.
(本小题满分10分)选修4-1:几何证明选讲 如图,四边形ABCD是圆的内接四边形,延长BA和CD相交于点P,,. (Ⅰ)求的值; (Ⅱ)若BD为圆的直径,且,求BC的长.