(本题满分15分) 设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称.(Ⅰ) 求曲线C2的方程;(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由
选修4-4:极坐标与参数方程选讲 已知曲线的极坐标方程为,直线的参数方程是:. (Ⅰ)求曲线的直角坐标方程,直线的普通方程; (Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线曲线,求曲线上的点到直线距离的最小值.
选修4-1:几何证明选讲 如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧的中点,连结AG分别交⊙O、BD于点E、F,连结CE. (Ⅰ)求证:为⊙O的直径。 (Ⅱ)求证:;
已知函数。 (Ⅰ)讨论函数的单调区间; (Ⅱ)若在恒成立,求的取值范围。
已知数列的前n项和为,且,(n=1,2,3…)数列中,,点在直线上。 (Ⅰ)求数列和的通项公式; (Ⅱ)记,求满足的最大正整数n。
如图已知是一条直路上的三点,,,从三点分别遥望塔,在处看见塔在北偏东,在处看见塔在正东方向,在处看见塔在南偏东,求塔到直路的最短距离。