在中,两个定点,的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。(1)求动点C的轨迹方程;(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。
如图,已知四棱锥中,底面是直角梯形,是线段上不同于的任意一点,且 (1)求证:; (2)求证:; (3)求三棱锥的体积。
已知函数 (1)求曲线在点处的切线的方程; (2)直线为曲线的切线,且经过原点,求直线的方程及切点的坐标; (3)如果曲线的某一切与直线垂直,求切点坐标和切线方程。
如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点. (1)求证:EF∥平面PAD; (2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”. (1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围; (3)若“”是真命题,求实数的取值范围.
已知。 (1)若,求的展开式中的系数; (2)证明:。