(本题12分)已知两直线,分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有,经过点A、B、C的抛物线的对称轴与直线交于点D,如图所示。(1)求抛物线的函数解析式;(2)当直线绕点C顺时针旋转一个锐角时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;(3)当直线绕点C旋转时,它与抛物线的另一个交点为P,请找出使△PCD为等腰三角形的点P,并求出点P的坐标。
化简(每小题5分,共10分)(1) (2)
画出数轴,把下列各组数分别在数轴上表示出来,并用“<”连接起来: ,2, 0, ,,
如图12,在△ABC中,AC=BC,∠B=30°,D是AC的中点,E是线段BC延长线上一动点,过点A作AF∥BE,与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若CE=BC,试判断四边形AFCE是什么样的四边形,并证明你的结论;(3)若CE= BC,求证:EF⊥AC.
甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
(1)在图11.1中,“7分”所在扇形的圆心角等于 °;将图11.2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
如图10,直线l1,l2交于点A,直线l2与x轴交于点B,与y轴交于点D,直线l1所对应的函数关系式为y=-2x+2.(1)求点C的坐标及直线l2所对应的函数关系式;(2)求△ABC的面积;(3)在直线l2上存在一点P,使得PB=PC,请直接写出点P的坐标.