(本小题满分13分)已知椭圆的离心率为,椭圆短轴长为. (Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值。
已知函数(其中是自然对数的底数),,. (1)记函数,且,求的单调增区间; (2)若对任意,,均有成立,求实数的取值范围.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为. (1)求关于的函数解析式,并指出该函数的定义域; (2)求观光路线总长的最大值.
如图,在四棱锥中,底面是菱形,且. (1)求证:; (2)若平面与平面的交线为,求证:.
已知的内角的对边分别为,. (1)若,,求的值; (2)若,求的值.
(本小题满分14分) 设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.