已知是定义在上的偶函数,当时, 。(1)用分段函数形式写出在上的解析式; (2)画出函数的大致图象;并根据图像写出的单调区间;
(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使成立,则称x0为的不动点。已知函数(a≠0)。(1)当时,求函数的不动点;(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;(3)(特保班做) 在(2)的条件下,若图象上A、B两点的横坐标是函数的不动点,且A、B两点关于点对称,求的的最小值。
(本小题满分10分)已知函数是奇函数,且(1)求函数的解析式;(2)当时,讨论函数的单调性。
(本小题满分10分)某车间生产一种仪器的固定成本是10000元,每生产一台该仪器需要增加投入100元,已知总收益满足函数:,其中是仪器的月产量。(1)将利润表示为月产量的函数(用表示);(2)当月产量为何值时,车间所获利润最大?最大利润是多少元?(总收益=总成本+利润)
(本小题满分9分)以下是用二分法求方程的一个近似解(精确度为0.1)的不完整的过程,请补充完整。
解:设函数,其图象在上是连续不断的,且在上是单调递______(增或减)。先求_______,______,____________。所以在区间____________内存在零点,再填上表:下结论:_______________________________。(可参考条件:,;符号填+、-)
(本小题满分9分)已知R为全集,,,求(RA)