(本小题满分15分)已知O为坐标原点,点A、B分别在x轴,y轴上运动,且|AB|=8,动点P满足=,设点P的轨迹为曲线C,定点为M(4,0),直线PM交曲线C于另外一点Q.(1)求曲线C的方程;(2)求△OPQ面积的最大值.
如图,平面,,,,分别为的中点. (I)证明:平面; (II)求与平面所成角的正弦值.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。 求证: (1)PA∥平面BDE (2)平面PAC平面BDE
设数列的前项和为, (1)若,求; (2)若,求的前6项和; (3)若,证明是等差数列.
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元). (1)分别将A、B两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产. ①若平均投入生产两种产品,可获得多少利润? ②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
在中,内角对边的边长分别是,已知,. (1)若的面积等于,求; (2)若,求的面积.