已知函数且(Ⅰ)试用含的代数式表示;(Ⅱ)求的单调区间; (Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点;
(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.
已知直线:,直线:.若,求的取值范围.
已知椭圆,过点(m,0)作圆的切线交椭圆G于A,B两点. (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值.
如图,已知椭圆(a>b>0)的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程; (2)已知定点,若直线与椭圆交于、两点.问:是否存在的值, 使以为直径的圆过点?请说明理由.
已知函数,是的一个极值点. (1)求的单调递增区间; (2)若当时,恒成立,求实数的取值范围.