为了了解中学生的体能情况,抽取了某中学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
已知,,,为坐标原点.(Ⅰ),求的值;;(Ⅱ)若,且,求与的夹角.
已知函数,()在处取得最小值.(Ⅰ)求的值;(Ⅱ)若在处的切线方程为,求证:当时,曲线不可能在直线的下方;(Ⅲ)若,()且,试比较与的大小,并证明你的结论.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)如果对于任意的,总成立,求实数的取值范围;(Ⅲ)设函数,,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.
湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:,为常数,当万元时,万元;当万元时,万元.(参考数据:,,)(Ⅰ)求的解析式;(Ⅱ)求该景点改造升级后旅游利润的最大值.(利润=旅游收入-投入)
已知为坐标原点,向量,,,点满足.(Ⅰ)记函数,,讨论函数的单调性,并求其值域;(Ⅱ)若三点共线,求的值.