设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
(本小题满分12分)已知椭圆经过点A(0,4),离心率为; (1)求椭圆C的方程; (2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
(本小题满分12分)已知椭圆上一点M的纵坐标为2. (1)求M的横坐标; (2)求过点M且与共焦点的椭圆方程.
(本小题满分12分)已知恒成立,方程表示焦点在轴上的椭圆,若命题“且”为假,求实数的取值范围.
(本小题满分10分) 已知命题若非是的充分不必要条件,求的取值范围.
(本小题满分12分)数列的前项和, (1)求数列的通项公式; (2)若,求数列的前项和.