设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
(本小题12分) 在锐角中,分别是内角所对的边,且。 (1)求角的大小; (2)若,且,求的面积。
(本小题12分) 若函数在R上的最大值为5. (1)求实数m的值; (2)求的单调递减区间。
设函数 (1)若的最小值为3,求的值; (2)求不等式的解集.
已知曲线(为参数),(为参数). (1)化的方程为普通方程,并说明它们分别表示什么曲线; (2)过曲线的左顶点且倾斜角为的直线交曲线于两点,求.
如图,四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,,求的值; (2)若,证明:.