如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于(1)求PF:FB的值(2)求平面与平面所成的锐二面角的正弦值。
已知函数f(x)=ax3-3x2+1- (a∈R且a≠0),试求函数f(x)的极大值与极小值.
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求的取值范围.
选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。(2)当a =2时,解关于x的不等式
选修4—1:几何证明选讲如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且(1)求证:A、P、D、F四点共圆;(2)若AE·ED=24,DE=EB=4,求PA的长。
已知,函数(1)求的极小值;(2)若在上为单调增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.