已知一次函数的图象经过点、.(1)求这个一次函数的解析式;(2)如果点在这个一次函数图像上且它的纵坐标为,求点的坐标.
已知反比例函数 y = m x 的图象经过点 A ( 2 , 3 ) .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 y = m x 的图象上点 A 的右侧取点 C ,过点 C 作 x 轴的垂线交 x 轴于点 H ,过点 A 作 y 轴的垂线交直线 CH 于点 D .
①过点 A ,点 C 分别作 x 轴, y 轴的垂线,两线相交于点 B ,求证: O , B , D 三点共线;
②若 AC = 2 OA ,求证: ∠ AOD = 2 ∠ DOH .
如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD , ABCD 是矩形,其对角线 AC , BD 交于点 E ,连接 OE 交 AD 于点 F .
(1)求证: ΔOAF ≅ ΔDAB ;
(2)求 DF AF 的值.
某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量 y (瓶 ) 与每瓶售价 x (元 ) 之间存在一次函数关系(其中 10 ⩽ x ⩽ 21 ,且 x 为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.
(1)求 y 与 x 之间的函数关系式;
(2)设该药店销售该消毒液每天的销售利润为 w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?
为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:
组别
成绩范围
频数
A
60 ~ 70
2
B
70 ~ 80
m
C
80 ~ 90
9
D
90 ~ 100
n
(1)分别求 m , n 的值;
(2)若把每组中各学生的成绩用这组数据的中间值代替(如 60 ~ 70 的中间值为 65 ) 估计全校学生的平均成绩;
(3)从 A 组和 D 组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在 D 组的概率.
(1)计算: ( 1 2 ) - 2 + ( 3 . 14 - π ) 0 + | 3 - 12 | - 4 sin 60 ° .
(2)先化简,再求值: ( 1 x - 1 - x + 1 ) ÷ x - 2 x 2 - 1 ,其中 x = 2 - 1 .