在中,角,,的对边分别为,,.已知,,且.(Ⅰ)求角的大小;(Ⅱ)求△的面积.
(本小题满分14分)已知向量且,函数 (I)求函数的最小正周期及单调递增区间;(II)若,分别求及的值
(本小题满分14分)已知向量,.(I) 若,共线,求的值;(II)当时,求与夹角的余弦值.
如图,平面直角坐标系中,射线()和()上分别依次有点、,……,,……,和点,,……,……,其中,,.且, ……).(1)用表示及点的坐标;(2)用表示及点的坐标;(3)写出四边形的面积关于的表达式,并求的最大值.
已知:函数 ,在区间上有最大值4,最小值1,设函数.(1)求、的值及函数的解析式;(2)若不等式在时恒成立,求实数的取值范围;(3)如果关于的方程有三个相异的实数根,求实数的取值范围.
已知:曲线上任意一点到点的距离与到直线的距离相等.(1)求曲线的方程;(2)如果直线交曲线于、两点,是否存在实数,使得以为直径的圆经过原点?若存在,求出的值;若不存在,说明理由.