选修4-1:几何证明选讲如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。求证:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。
设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为. (1)求ω的最小正周期; (2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.
已知ω>0,a=(2sinωx+cosωx,2sinωx-cosωx),b=(sinωx,cosωx).f(x)=a·b.f(x)图象上相邻的两个对称轴的距离是. (1)求ω的值; (2)求函数f(x)在区间上的最大值和最小值.
已知函数f(x)=sincos+cos2- (1)若f(α)=,α∈(0,π),求α的值; (2)求函数f(x)在上最大值和最小值.
已知a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),设f(x)=a·b. (1)求函数f(x)的最小正周期; (2)当x∈时,求函数f(x)的最大值和最小值.
函数f(x)=sinsin+sinxcosx(x∈R). (1)求f的值; (2)在△ABC中,若f=1,求sinB+sinC的最大值.