(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数=.(1)判断函数的奇偶性,并证明;(2)求的反函数,并求使得函数有零点的实数的取值范围.
如图所示,在直三棱柱中,,,,,是棱的中点.(1)证明:平面;(2)求二面角的余弦值.
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (1)设所选3人中女生人数为,求的分布列 (2)在男生甲被选中的情况下,求女生乙也被选中的概率.
已知函数.(Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围;(Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;(Ⅲ)当时,证明:
设点是曲线上的动点,点到点(0,1)的距离和它到焦点的距离之和的最小值为.(1)求曲线C的方程;(2)若点的横坐标为1,过作斜率为的直线交于点,交轴于点,过点且与垂直的直线与交于另一点,问是否存在实数,使得直线与曲线相切?若存在,求出的值;若不存在,请说明理由.
已知等差数列的公差大于0,且、是方程的两根.数列的前项和为,满足(Ⅰ)求数列,的通项公式;(Ⅱ)设数列的前项和为,记.若为数列中的最大项,求实数的取值范围.