某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。(1)求曲线的标准方程;(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点. (1)求三棱锥的体积; (2)求与平面所成的角大小.
选修4-5:不等式选讲 已知,不等式f(x)<4的解集为M. (1)求M; (2)当时,证明:.
选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线交于A,B两点. (1)求的长; (2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.
选修4-1:几何证明选讲 如图,正方形ABCD边长为2,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E. (1)求证:AE=EB; (2)求的值.
已知函数. (1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)若函数f(x)在上为单调增函数,求a的取值范围; (3)设m,n为正实数,且m>n,求证:.